Secoda Docs
Get Started
  • Getting Started with Secoda
    • Secoda as an Admin
      • Deployment options
      • Sign in options
      • Settings
      • Connect your data
        • Define Service Accounts
        • Choose which schemas to extract
      • Customize the workspace
      • Populate Questions with FAQs
      • Invite your teammates
        • Joining & Navigating between Multiple Workspaces
      • Onboard new users
        • Onboarding email templates
        • Onboarding Homepage template
        • Training session guide
      • User engagement and adoption
        • Tips & Tricks to share with new users
    • Secoda as an Editor
    • Secoda as a Viewer
      • Introduction guide
      • Requesting changes in Secoda
  • Best practices
    • Setting up your workspace
    • Integrating Secoda into existing workflows
    • Documentation best practices
    • Glossary best practices
    • Data governance
    • Data quality
    • Clean up your data
    • Tool migrations using Secoda
    • Slack <> Questions workflow
    • Defining resources workflow
    • Streamline data access: Private and public teams workflow
    • Exposing Secoda to external clients
  • Resource Management
    • Editing Properties
      • AI Description Editor
      • Bulk Editing
      • Propagation
      • Templates
    • Resource Sidesheet
    • Assigning Owners
    • Custom Properties
    • Tags
      • Custom Tags
      • PII Identifier
      • Verified Identifier
    • Import and Export Resources
    • Related Resources
  • User Management
    • Roles
    • Teams
    • Groups
  • Integrations
    • Integration Settings
    • Data Warehouses
      • BigQuery
        • BigQuery Metadata Extracted
      • Databricks
        • Databricks Metadata Extracted
      • Redshift
        • Redshift Metadata Extracted
      • Snowflake
        • Snowflake Metadata Extracted
        • Snowflake Costs
        • Snowflake Native App
      • Apache Hive
        • Apache Hive Metadata Extracted
      • Azure Synapse
        • Azure Synapse Metadata Extracted
      • MotherDuck
        • MotherDuck Metadata Extracted
      • ClickHouse
        • ClickHouse Metadata Extracted
    • Databases
      • Druid
        • Druid Metadata Extracted
      • MySQL
        • MySQL Metadata Extracted
      • Microsoft SQL Server
        • Page
        • Microsoft SQL Server Metadata Extracted
      • Oracle
        • Oracle Metadata Extracted
      • Salesforce
        • Salesforce Metadata Extracted
      • Postgres
        • Postgres Metadata Extracted
      • MongoDB
        • MongoDB Metadata Extracted
      • Azure Cosmos DB
        • Azure Cosmos DB Metadata Extracted
      • SingleStore
        • SingleStore Metadata Extracted
      • DynamoDB
        • DynamoDB Metadata Extracted
    • Data Visualization Tools
      • Amplitude
        • Amplitude Metadata Extracted
      • Looker
        • Looker Metadata Extracted
      • Looker Studio
        • Looker Studio Metadata Extracted
      • Metabase
        • Metabase Metadata Extracted
      • Mixpanel
        • Mixpanel Metadata Extracted
      • Mode
        • Mode Metadata Extracted
      • Power BI
        • Power BI Metadata Extracted
      • QuickSight
        • QuickSight Metadata Extracted
      • Retool
        • Retool Metadata Extracted
      • Redash
        • Redash Metadata Extracted
      • Sigma
        • Sigma Metadata Extracted
      • Tableau
        • Tableau Metadata Extracted
      • ThoughtSpot
        • ThoughtSpot Metadata Extracted
      • Cluvio
        • Cluvio Metadata Extracted
      • Hashboard
        • Hashboard Metadata Extracted
      • Lightdash
        • Lightdash Metadata Extracted
      • Preset
        • Preset Metadata Extracted
      • Superset
        • Superset Metadata Extracted
      • SQL Server Reporting Services
        • SQL Server Reporting Services Metadata Extracted
      • Hex
        • Hex Metadata Extracted
      • Omni
        • Omni Metadata Extracted
    • Data Pipeline Tools
      • Census
        • Census Metadata Extracted
      • Stitch
        • Stitch Metadata Extracted
      • Airflow
        • Airflow Metadata Extracted
      • Dagster
        • Dagster Metadata Extracted
      • Fivetran
        • Fivetran Metadata Extracted
      • Glue
        • Glue Metadata Extracted
      • Hightouch
        • Hightouch Metadata Extracted
      • Apache Kafka
        • Apache Kafka Metadata Extracted
      • Confluent Cloud
        • Confluent Cloud Metadata Extracted
      • Polytomic
        • Polytomic Metadata Extracted
      • Matillion
        • Matillion Metadata Extracted
      • Airbyte
        • Airbyte Extracted Metadata
      • Informatica
        • Informatica Metadata Extracted
      • Azure Data Factory
        • Azure Data Factory Metadata Extracted
    • Data Transformation Tools
      • dbt
        • dbt Cloud
          • dbt Cloud Metadata Extracted
        • dbt Core
          • dbt Core Metadata Extracted
      • Coalesce
        • Coalesce Metadata Extracted
    • Data Quality Tools
      • Cyera
      • Dataplex
        • Dataplex Metadata Extracted
      • Great Expectations
        • Great Expectations Metadata Extracted
      • Monte Carlo
        • Monte Carlo Metadata Extracted
      • Soda
        • Soda Metadata Extracted
    • Data Lakes
      • Google Cloud Storage
        • GCS Metadata Extracted
      • AWS S3
        • S3 Metadata Extracted
    • Query Engines
      • Trino
        • Trino Metadata Extracted
    • Custom Integrations
      • File Upload
        • CSV File Format
        • JSONL File Format
        • Maintain your Resources
      • Marketplace
        • Secoda SDK
        • Upload and Connect your Marketplace Integration
        • Publish the Integration
        • Example Integrations
      • Secoda Fields Explained
    • Security
      • Connecting via Reverse SSH Tunnel
      • Connecting via SSH Tunnel
      • Connecting via VPC Peering
      • Connecting via AWS Cross Account Role
      • Connecting via AWS PrivateLink
        • Snowflake via AWS PrivateLink
        • AWS Service via AWS PrivateLink
      • Recommendations to Improve SSH Tunnel Concurrency on SSH Bastion
    • Push Metadata to Source
  • Extensions
    • Chrome
    • Confluence
      • Confluence Metadata Extracted
      • Confluence best practices
    • Git
    • GitHub
    • Jira
      • Jira Metadata Extracted
    • Linear
    • Microsoft Teams
    • PagerDuty
    • Slack
      • Slack user guide
  • Features
    • Access Requests
    • Activity Log
    • Analytics
    • Announcements
    • Audit Log
    • Automations
      • Automations Use Cases
    • Archive
    • Bookmarks
    • Catalog
    • Collections
    • Column Profiling
    • Data Previews
    • Data Quality Score
    • Documents
      • Comments
      • Embeddings
    • Filters
    • Glossary
    • Homepage
    • Inbox
    • Lineage
      • Manual Lineage
    • Metrics
    • Monitors
      • Monitoring Use Cases
    • Notifications
    • Policies
    • Popularity
    • Publishing
    • Queries
      • Query Blocks
        • Chart Blocks
      • Extracted Queries
    • Questions
    • Search
    • Secoda AI
      • Secoda AI User Guide
      • Secoda AI Use Cases
      • Secoda AI Security FAQs
      • Secoda MCP Server
    • Sharing
    • Views
  • Enterprise
    • SAML
      • Okta SAML
      • OneLogin SAML
      • Microsoft Azure AD SAML
      • Google SAML
      • SCIM
      • SAML Attributes
    • Self-Hosted
      • Additional Resources
        • Additional Environment Variables
          • PowerBI OAuth Application (on-premise)
          • Google OAuth Application (on-premise)
          • Github Application (on-premise)
          • OpenAI API Key Creation (on-premise)
          • AWS Bucket with Access Keys (on-premise)
        • TLS/SSL (Docker compose)
        • Automatic Updates (Docker compose)
        • Backups (Docker compose)
        • Outbound Connections
      • Self-Hosted Changelog
    • SIEM
      • Google Chronicle
  • API
    • Get Started
    • Authentication
    • Example Workflows
    • API Reference
      • Getting Started
      • Helpful Information
      • Audit Logs
      • Charts
      • Collections
      • Columns
      • Custom Properties
      • Dashboards
      • Databases
      • Documents
      • Events
      • Groups
      • Integrations
      • Lineage
      • Monitors
      • Resources
      • Schemas
      • Tables
      • Tags
      • Teams
      • Users
      • Questions
      • Queries
      • Getting Started
      • Helpful Information
      • Audit Logs
      • Charts
      • Collections
      • Columns
      • Custom Properties
      • Dashboards
      • Databases
      • Documents
      • Events
      • Groups
      • Integrations
      • Lineage
      • Monitors
      • Resources
      • Schemas
      • Tables
      • Tags
      • Teams
      • Users
      • Questions
      • Queries
  • FAQ
  • Policies
    • Terms of Use
    • Secoda AI Terms
    • Master Subscription Agreement
    • Privacy Policy
    • Security Policy
    • Accessibility Statement
    • Data Processing Agreement
    • Subprocessors
    • Service Level Agreement
    • Bug Bounty Program
  • System Status
  • Changelog
Powered by GitBook
On this page
  • Key benefits of effective data cleanup
  • Features for cleaning up your data
  • Access metadata
  • to identify stale assets
  • Cost containment resources

Was this helpful?

  1. Best practices

Clean up your data

Clean up your data resources with Secoda's help.

Last updated 5 months ago

Was this helpful?

Secoda has built-in tools designed to streamline the process of data cleanup, enhancing the overall health of your data environment. This guide will explore how you can leverage these tools to improve data quality, enhance security, reduce storage costs, and boost productivity.

Make sure you check the in Secoda before deprecating a resource in the source!

Key benefits of effective data cleanup

  • Efficient Resource Management: Quickly identify underutilized data, reducing time spent on manual checks.

  • Enhanced Data Quality and Security: Improve the accuracy and protectiveness of your data assets.

  • Increased Analyst Productivity: Ensure analysts have access to relevant and reliable data.

  • Cost Reduction: Decrease expenses associated with storing outdated or unused data.

Features for cleaning up your data

Access Popularity metadata

  • Utilize the Popularity metadata to determine which data resources are least accessed.

  • Sorting the Catalog by Popularity helps identify candidates for deprecation based on minimal views or queries.

Automations to identify stale assets

  • Set up Automations to tag resources that haven’t been accessed or updated within a specific timeframe as "Stale" or "Candidates for Deprecation."

  • Consider adding a property to the Automation to push these to a private Team or specific Collection, if that's helpful for review purposes.

  • Then, filter the Catalog by these tags to manage these resources efficiently!

Monitoring Use Cases

  • Implement Cardinality or Unique Percentage Monitors on essential data resources.

  • Alerts from these monitors can indicate duplicates or other data quality issues, prompting cleanup actions.

Cost containment resources

  • Articles:

  • Snowflake Costs

extends the functionality of the above features, enabling programmatic management of data cleanup tasks. If you require assistance with the API, the is available for support.

Webinar:

lineage graph
Secoda’s API
Secoda Community Slack
Data Stack Cost Management Best Practices | Secoda
How To Increase the ROI of Your Data Team | Secoda
4 ways to improve data quality | Secoda
Mastering cost containment for modern data teams